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1 Introduction

Understanding how inflation expectations shape portfolio decisions has long been a central
issue in finance and macroeconomics. Classical portfolio theory (Markowitz, 1952; Merton,
1969) predicts that investors allocate wealth between risky and risk-free assets according to
expected returns, variances, and individual risk aversion. However, in the presence of inflation
uncertainty, real returns are distorted, and behavioral factors such as probability weighting
further complicate optimal portfolio choices. Recent global inflation episodes and shifts in
monetary policy regimes have renewed interest in the role of inflation expectations in shaping
investor risk-taking and real asset allocation.

A growing body of literature explores the behavioral and macro-financial dimensions of inflation
expectations. Empirically, rising inflation expectations tend to reduce investors’ willingness to
hold long-term or risky assets, consistent with precautionary motives and wealth effects (Coibion,
Gorodnichenko and Weber, 2022). Theoretically, standard expected-utility frameworks have
been extended to incorporate loss aversion (Barberis, Huang and Santos, 2001), ambiguity
preferences (Epstein and Schneider, 2008), and probability weighting functions (Tversky and
Kahneman, 1992; Prelec, 1998). In these models, subjective beliefs or distorted probabilities
amplify deviations from rational benchmark outcomes. Within asset-pricing contexts, Barberis
(2013) and Gollier (2018) show that behavioral probability transformations can generate non-
linear portfolio responses to perceived risk and return asymmetries. More recently, Bansal and
Yaron (2004) and Drechsler, Savov and Schnabl (2017) link macroeconomic uncertainty, infla-
tion expectations, and asset risk premia through recursive preferences and belief updating. Yet,
despite this progress, theoretical clarity remains limited on how inflation expectations interact
with subjective probability weighting to jointly determine optimal risk exposure.

This paper develops a simple yet analytically tractable model that unifies these mechanisms. We
consider an investor with constant relative risk aversion (CRRA) preferences and Prelec-type
probability weighting, facing a single-period decision between a risk-free asset and a risky asset
under two possible states of the world. Inflation expectations enter the model by shifting the
real returns on both assets, thereby inducing a pure wealth effect without changing the slope
of the opportunity set. Within this setting, we derive closed-form comparative statics showing
that higher inflation expectations reduce the optimal risky share under decreasing absolute risk
aversion (DARA), while stronger overweighting of the good state (through the parameter of
the weighting function) increases the risky share. The model thus generates unambiguous an-
alytical predictions linking behavioral distortions and macroeconomic expectations to portfolio
rebalancing.

Our contribution is twofold. First, we provide a behavioral-macro portfolio framework that
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formally connects inflation expectations with subjective probability weighting in a unified op-
timization problem. To our knowledge, this is the first closed-form derivation showing how
inflation expectations and probability weighting jointly affect the interior–corner boundary of
portfolio choice, allowing direct comparative-statics interpretation. Second, we extend the clas-
sic mean–variance intuition into a behavioral–state space where inflation shifts the opportunity
frontier in parallel, and probability weighting rotates indifference curves through nonlinear utility
curvature. These interactions yield testable implications for inflation-driven asset reallocation
and can serve as a microfoundation for behavioral extensions of dynamic stochastic general
equilibrium (DSGE) or consumption-based asset pricing models.

The remainder of the paper proceeds as follows. Section 2 presents the theoretical model,
including the investor’s optimization problem and the resulting first-order conditions. We also
derives comparative statics for inflation expectations and probability weighting, and provides
a closed-form analysis under CRRA preferences, followed by graphical interpretations linking
theory to policy-relevant intuition. Section 3 concludes with policy recommendations provided.

2 Model

2.1 Set up

Time is a single period. The investor has initial endowment 𝐴 > 0 and allocates 𝑚 to a risk-free
asset and 𝑎 to a risky asset, with 𝐴 = 𝑚+𝑎. There are two mutually exclusive states of the world,
denoted 𝑆1 (the “good” state) and 𝑆2 (the “bad” state), occurring with objective probabilities 𝑝

and 1 − 𝑝, respectively.

The risk-free asset yields a nominal gross return 1 + 𝑟 𝑓 . The risky asset yields state-dependent
nominal returns 1 + 𝑟1 and 1 + 𝑟2, where 𝑟1 > 𝑟 𝑓 > 𝑟2. Here, 𝑟1 represents the favorable state
payoff (e.g., when the risky asset performs well or the economy expands), while 𝑟2 represents
the unfavorable state payoff (e.g., when the asset underperforms or the economy contracts). The
spread 𝑟1−𝑟2 captures the degree of risk in the risky asset’s payoff distribution, and the expected
excess return is as follow:

𝑝(𝑟1 − 𝑟 𝑓 ) + (1 − 𝑝) (𝑟2 − 𝑟 𝑓 ) (1)

determines whether the investor optimally holds a positive position in the risky asset.

Inflation expectations 𝜋𝑒 enter the model through real returns,

𝑟′𝑓 = 𝑟 𝑓 − 𝜋𝑒, 𝑟′𝑖 = 𝑟𝑖 − 𝜋𝑒, 𝑖 ∈ {1, 2}, (2)

2



so that an increase in 𝜋𝑒 uniformly reduces the real payoff of all assets without altering their
relative slope.1 Hence the excess real returns equal the nominal excess returns:

𝑟′1 − 𝑟′𝑓 = 𝑟1 − 𝑟 𝑓 , 𝑟′2 − 𝑟′𝑓 = 𝑟2 − 𝑟 𝑓 . (3)

Bernoulli utility 𝑈 : R+ → R is twice continuously differentiable with:

𝑈′(𝑊) > 0, 𝑈′′(𝑊) < 0, (4)

where 𝑊 denotes the investor’s state-contingent real wealth, and the utility function (when
invoked) exhibits decreasing absolute risk aversion (DARA),

R𝐴 (𝑊) ≡ −𝑈
′′(𝑊)

𝑈′(𝑊) is strictly decreasing in 𝑊. (5)

Behavioral probability weighting 𝑤 : [0, 1] → [0, 1] satisfies 𝑤(0) = 0, 𝑤(1) = 1, and is
continuously differentiable and strictly increasing. The investor therefore evaluates uncertain
outcomes using a subjective decision weight 𝑤(𝑝) rather than the objective probability 𝑝.

Using 𝑚 = 𝐴 − 𝑎, state-contingent real wealth is:

𝑊1(𝑎, 𝜋𝑒) = 𝐴 + (𝐴 − 𝑎)𝑟′𝑓 + 𝑎𝑟′1 = 𝐴 + 𝐴(𝑟 𝑓 − 𝜋𝑒) + 𝑎(𝑟1 − 𝑟 𝑓 ),

𝑊2(𝑎, 𝜋𝑒) = 𝐴 + (𝐴 − 𝑎)𝑟′𝑓 + 𝑎𝑟′2 = 𝐴 + 𝐴(𝑟 𝑓 − 𝜋𝑒) + 𝑎(𝑟2 − 𝑟 𝑓 ). (6)

The investor chooses 𝑎 ∈ [0, 𝐴] to maximize:

max
𝑎∈[0,𝐴]

𝑓 (𝑎; 𝜋𝑒, 𝑝) ≡ 𝑤(𝑝)𝑈 (𝑊1) +
(
1 − 𝑤(𝑝)

)
𝑈 (𝑊2). (7)

Eliminating 𝑎 from (6), the opportunity line in (𝑊1,𝑊2)-space is:

(1 + 𝑘)
(
𝐴 + 𝐴𝑟′𝑓

)
= 𝑘𝑊1 +𝑊2, 𝑘 ≡ −

𝑟2 − 𝑟 𝑓

𝑟1 − 𝑟 𝑓
, (8)

whose slope 𝑘 is invariant to 𝜋𝑒 by (3).

Differentiating (6), we get:

𝜕𝑊1
𝜕𝑎

= 𝑟1 − 𝑟 𝑓 ,
𝜕𝑊2
𝜕𝑎

= 𝑟2 − 𝑟 𝑓 . (9)

1This structure allows us to isolate the wealth effect of inflation expectations while preserving the risk–return
tradeoff across states.
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For an interior optimum 𝑎★ ∈ (0, 𝐴), the first order condition (FOC) is:

0 = 𝑓𝑎 (𝑎★; 𝜋𝑒, 𝑝) = 𝑤(𝑝)𝑈′(𝑊1) (𝑟1 − 𝑟 𝑓 ) +
(
1 − 𝑤(𝑝)

)
𝑈′(𝑊2) (𝑟2 − 𝑟 𝑓 ). (10)

The second order condition (SOC) is:

𝑓𝑎𝑎 (𝑎; 𝜋𝑒, 𝑝) = 𝑤(𝑝)𝑈′′(𝑊1) (𝑟1 − 𝑟 𝑓 )2 +
(
1 − 𝑤(𝑝)

)
𝑈′′(𝑊2) (𝑟2 − 𝑟 𝑓 )2 < 0, (11)

which holds by (4) when at least one of (𝑟1 − 𝑟 𝑓 ), (𝑟2 − 𝑟 𝑓 ) is nonzero.

Remark 1 (Tangency). Equation (10) is the tangency between the opportunity line (8) and a
behavioral indifference curve 𝑤(𝑝)𝑈 (𝑊1) + [1 − 𝑤(𝑝)]𝑈 (𝑊2) = const.

Define 𝑔(𝑎; 𝜋𝑒, 𝑝) ≡ 𝑓𝑎 (𝑎; 𝜋𝑒, 𝑝).

Theorem 1 (Existence and uniqueness). Suppose the utility function satisfies non-satiation and
risk aversion (𝑈′(𝑊) > 0, 𝑈′′(𝑊) < 0), and at least one of (𝑟1 − 𝑟 𝑓 ), (𝑟2 − 𝑟 𝑓 ) is nonzero.
Then for any inflation expectation 𝜋𝑒 and objective probability 𝑝 ∈ (0, 1), there exists a unique
maximizer 𝑎∗ ∈ [0, 𝐴] for the problem:

max
𝑎∈[0,𝐴]

𝑓 (𝑎; 𝜋𝑒, 𝑝) ≡ 𝑤(𝑝)𝑈 (𝑊1) + (1 − 𝑤(𝑝))𝑈 (𝑊2)

If the condition
𝑤(𝑝) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝)) (𝑟2 − 𝑟 𝑓 ) > 0

holds, then 𝑎∗ ∈ (0, 𝐴); otherwise 𝑎∗ = 0.

Proof. The existence and uniqueness of the maximizer 𝑎∗ is established by demonstrating the
strict concavity of the objective function 𝑓 (𝑎) and analyzing the sign of the first derivative at
the boundary 𝑎 = 0.

Part 1: Strict concavity and uniqueness: First-order condition (FOC): The objective function is
maximized over the closed and bounded interval 𝑎 ∈ [0, 𝐴]. The FOC for an interior optimum
is 𝑓𝑎 (𝑎∗; 𝜋𝑒, 𝑝) = 0. Let 𝑔(𝑎; 𝜋𝑒, 𝑝) ≡ 𝑓𝑎 (𝑎; 𝜋𝑒, 𝑝). Using the chain rule, 𝜕𝑊𝑖

𝜕𝑎
= 𝑟𝑖 − 𝑟 𝑓 , the

FOC is:

𝑔(𝑎, 𝜋𝑒, 𝑝) = 𝑤(𝑝)𝑈′(𝑊1) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝))𝑈′(𝑊2) (𝑟2 − 𝑟 𝑓 ) = 0

Second-order condition (SOC): To check concavity, we calculate the second derivative, 𝑓𝑎𝑎:

𝑓𝑎𝑎 (𝑎; 𝜋𝑒, 𝑝) = 𝜕𝑔

𝜕𝑎
= 𝑤(𝑝) 𝜕𝑈

′(𝑊1)
𝜕𝑎

(𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝)) 𝜕𝑈
′(𝑊2)
𝜕𝑎

(𝑟2 − 𝑟 𝑓 )
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Applying the chain rule 𝜕𝑈′ (𝑊𝑖)
𝜕𝑎

= 𝑈′′(𝑊𝑖) 𝜕𝑊𝑖

𝜕𝑎
= 𝑈′′(𝑊𝑖) (𝑟𝑖 − 𝑟 𝑓 ):

𝑓𝑎𝑎 (𝑎; 𝜋𝑒, 𝑝) = 𝑤(𝑝)𝑈′′(𝑊1) (𝑟1 − 𝑟 𝑓 )2 + (1 − 𝑤(𝑝))𝑈′′(𝑊2) (𝑟2 − 𝑟 𝑓 )2 (12)

Strict concavity: We examine the sign of the SOC (12): i) Utility curvature: By assumption, the
investor is risk-averse, so𝑈′′(𝑊𝑖) < 0; ii) Weights: The subjective probability weights 𝑤(𝑝) and
1 − 𝑤(𝑝) are strictly positive since 𝑝 ∈ (0, 1) and 𝑤 : [0, 1] → [0, 1] is strictly increasing with
𝑤(0) = 0 and 𝑤(1) = 1; and iii) Excess returns: The squared terms (𝑟1 − 𝑟 𝑓 )2 and (𝑟2 − 𝑟 𝑓 )2

are non-negative. Since all terms are non-positive and at least one of the squared terms is
strictly positive (by assumption that the risky asset is truly risky), the entire expression is strictly
negative:

𝑓𝑎𝑎 (𝑎; 𝜋𝑒, 𝑝) < 0

Since the objective function 𝑓 (𝑎) is strictly concave, any stationary point 𝑎∗ that satisfies the
FOC is the unique global maximizer over the domain 𝑎 ∈ [0, 𝐴].

Part 2: Interior vs. Corner solution: Since 𝑓 (𝑎) is strictly concave, its derivative 𝑔(𝑎) is strictly
decreasing in 𝑎. This allows us to determine the location of the unique maximizer by evaluating
𝑔(𝑎) at the left boundary 𝑎 = 0.

Derivative at 𝑎 = 0: At 𝑎 = 0, the risky allocation is zero, so the real wealth is identical in both
states:

𝑊1(0, 𝜋𝑒) = 𝑊2(0, 𝜋𝑒) = 𝐴 + 𝐴(𝑟 𝑓 − 𝜋𝑒) = 𝐴 + 𝐴𝑟′𝑓

Substituting this into the FOC function 𝑔(𝑎):

𝑔(0; 𝜋𝑒, 𝑝) = 𝑤(𝑝)𝑈′(𝐴 + 𝐴𝑟′𝑓 ) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝))𝑈′(𝐴 + 𝐴𝑟′𝑓 ) (𝑟2 − 𝑟 𝑓 )

Factoring out 𝑈′(𝐴 + 𝐴𝑟′
𝑓
), we get:

𝑔(0; 𝜋𝑒, 𝑝) = 𝑈′(𝐴 + 𝐴𝑟′𝑓 )
[
𝑤(𝑝) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝)) (𝑟2 − 𝑟 𝑓 )

]
Boundary signs and conclusion: Since𝑈′(𝑊) > 0 (non-satiation), the sign of 𝑔(0) is determined
solely by the sign of the bracketed term, which is the subjective expected excess return.

• Case 1: Interior solution (𝑎∗ ∈ (0, 𝐴)) If the subjective expected excess return is positive:

𝑤(𝑝) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝)) (𝑟2 − 𝑟 𝑓 ) > 0

then 𝑔(0) > 0. Since 𝑔(𝑎) is strictly decreasing ( 𝑓𝑎𝑎 < 0), there must be a unique point
𝑎∗ ∈ (0, 𝐴) where 𝑔(𝑎∗) = 0. This is the unique global maximizer.
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• Case 2: Corner solution (𝑎∗ = 0) If the subjective expected excess return is non-positive:

𝑤(𝑝) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝)) (𝑟2 − 𝑟 𝑓 ) ≤ 0

then 𝑔(0) ≤ 0. Since 𝑔(𝑎) is strictly decreasing, 𝑔(𝑎) < 0 for all 𝑎 > 0. This means the
objective function 𝑓 (𝑎) is strictly decreasing from 𝑎 = 0. Therefore, the unique global
maximizer is the left boundary 𝑎∗ = 0.

This completes the proof. □

Corollary 1 (Rational benchmark). If the probability weighting is rational, i.e., 𝑤(𝑝) = 𝑝, then
the interior-corner condition in Theorem 1

𝑤(𝑝) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝)) (𝑟2 − 𝑟 𝑓 ) > 0

reduces to the standard expected-excess-return condition:

𝑝(𝑟1 − 𝑟 𝑓 ) + (1 − 𝑝) (𝑟2 − 𝑟 𝑓 ) > 0

Under this inequality, the unique maximizer is interior 𝑎∗ ∈ (0, 𝐴); if the inequality fails, the
unique maximizer is the corner 𝑎∗ = 0.

Proof. The corollary is proved by specializing the general behavioral optimization problem
(Theorem 1) to the case of rational expected utility, where the subjective weighting function
𝑤(𝑝) is simply the identity function, 𝑤(𝑝) = 𝑝.

Step 1: The objective function and FOC under rational weighting: The investor’s general
objective function from Theorem 1 is:

𝑓 (𝑎; 𝜋𝑒, 𝑝) = 𝑤(𝑝)𝑈 (𝑊1) + (1 − 𝑤(𝑝))𝑈 (𝑊2)

Substituting the rational weighting assumption 𝑤(𝑝) = 𝑝, the objective function becomes the
standard Expected Utility (EU) formulation:

𝑓 (𝑎; 𝜋𝑒, 𝑝) = 𝑝 𝑈 (𝑊1) + (1 − 𝑝)𝑈 (𝑊2)

The first-order condition (FOC), 𝑔(𝑎; 𝜋𝑒, 𝑝) ≡ 𝑓𝑎 (𝑎; 𝜋𝑒, 𝑝) = 0, is derived by differentiating the
EU objective with respect to the risky share 𝑎. Using the partial derivatives of wealth from the
setup, 𝜕𝑊1

𝜕𝑎
= 𝑟1 − 𝑟 𝑓 and 𝜕𝑊2

𝜕𝑎
= 𝑟2 − 𝑟 𝑓 :

𝑔(𝑎; 𝜋𝑒, 𝑝) = 𝑝 𝑈′(𝑊1) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑝)𝑈′(𝑊2) (𝑟2 − 𝑟 𝑓 ) (13)
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Step 2: Strict concavity and uniqueness: The Second-Order Condition (SOC), 𝑓𝑎𝑎, is obtained
by differentiating 𝑔(𝑎) with respect to 𝑎. Since 𝑝 replaces 𝑤(𝑝) in the general SOC (Equation
(11)):

𝑓𝑎𝑎 (𝑎; 𝜋𝑒, 𝑝) = 𝑝 𝑈′′(𝑊1) (𝑟1 − 𝑟 𝑓 )2 + (1 − 𝑝)𝑈′′(𝑊2) (𝑟2 − 𝑟 𝑓 )2

As in Theorem 1: i) 𝑝 ∈ (0, 1) and 1 − 𝑝 ∈ (0, 1) are positive weights; ii) 𝑈′′(𝑊𝑖) < 0 (risk
aversion); and iii) (𝑟𝑖−𝑟 𝑓 )2 ≥ 0. Since at least one state has a non-zero excess return, the SOC is
strictly negative: 𝑓𝑎𝑎 (𝑎; 𝜋𝑒, 𝑝) < 0. This confirms that the objective function is strictly concave,
and thus the unique global maximizer 𝑎∗ exists.

Step 3: Evaluate the interior-corner condition at 𝑎 = 0: The location of 𝑎∗ is determined by the
sign of the FOC function 𝑔(𝑎) at the boundary 𝑎 = 0. At 𝑎 = 0, real wealth is uniform across
states: 𝑊1 = 𝑊2 = 𝐴 + 𝐴𝑟′

𝑓
. Substituting this into the FOC (13):

𝑔(0; 𝜋𝑒, 𝑝) = 𝑝 𝑈′(𝐴 + 𝐴𝑟′𝑓 ) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑝)𝑈′(𝐴 + 𝐴𝑟′𝑓 ) (𝑟2 − 𝑟 𝑓 )

Factoring out the positive marginal utility term 𝑈′(𝐴 + 𝐴𝑟′
𝑓
) > 0:

𝑔(0; 𝜋𝑒, 𝑝) = 𝑈′(𝐴 + 𝐴𝑟′𝑓 )
[
𝑝(𝑟1 − 𝑟 𝑓 ) + (1 − 𝑝) (𝑟2 − 𝑟 𝑓 )

]
Step 4: Conclusion: The standard expected-excess-return criterion: Since 𝑈′(𝑊) > 0, the sign
of 𝑔(0) is determined entirely by the bracketed term, which is the definition of the expected
excess return E[𝑟 − 𝑟 𝑓 ]:

E[𝑟 − 𝑟 𝑓 ] ≡ 𝑝(𝑟1 − 𝑟 𝑓 ) + (1 − 𝑝) (𝑟2 − 𝑟 𝑓 )

In particular, i) if E[𝑟 −𝑟 𝑓 ] > 0, then 𝑔(0) > 0. Given 𝑔(𝑎) is strictly decreasing (from 𝑓𝑎𝑎 < 0),
the unique maximizer is an interior solution 𝑎∗ ∈ (0, 𝐴); and ii) if E[𝑟 − 𝑟 𝑓 ] ≤ 0, then 𝑔(0) ≤ 0.
Given 𝑔(𝑎) is strictly decreasing, 𝑓 (𝑎) is maximized at the corner solution 𝑎∗ = 0. This
demonstrates that under the rational benchmark 𝑤(𝑝) = 𝑝, the general interior-corner condition
from Theorem 1 reduces exactly to the standard EU criterion for risky investment. □

2.2 Comparative statics

We now study how the optimal risky share 𝑎★ responds to inflation expectations 𝜋𝑒 and to
probability weighting.

Theorem 2 (Effect of inflation expectations). Let 𝑎∗(𝜋𝑒) denote the unique interior solution
under the condition 𝑤(𝑝) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝)) (𝑟2 − 𝑟 𝑓 ) > 0. If the Bernoulli utility function
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𝑈 (𝑊) satisfies Decreasing Absolute Risk Aversion (DARA), then:

𝑑𝑎∗

𝑑𝜋𝑒
< 0

i.e., higher inflation expectations reduce the optimal risky investment.

Proof. The analysis proceeds using the implicit function theorem (IFT) on the first-order con-
dition (FOC), 𝑔(𝑎, 𝜋𝑒) = 𝑓𝑎 (𝑎; 𝜋𝑒, 𝑝) = 0.

Step 1: Apply the implicit function theorem: The FOC for the interior optimum 𝑎∗ is defined
implicitly by the function:

𝑔(𝑎, 𝜋𝑒) = 𝑤(𝑝)𝑈′(𝑊1) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝))𝑈′(𝑊2) (𝑟2 − 𝑟 𝑓 ) = 0

Applying the IFT to find 𝑑𝑎∗

𝑑𝜋𝑒
:

𝑑𝑎∗

𝑑𝜋𝑒
= −𝑔𝜋 (𝑎

∗, 𝜋𝑒)
𝑔𝑎 (𝑎∗, 𝜋𝑒)

(14)

Step 2: Sign the denominator, 𝑔𝑎: The denominator 𝑔𝑎 =
𝜕𝑔

𝜕𝑎
is the Second-Order Condition

(SOC), 𝑓𝑎𝑎, which confirms concavity:

𝑔𝑎 (𝑎, 𝜋𝑒) = 𝑤(𝑝)𝑈′′(𝑊1) (𝑟1 − 𝑟 𝑓 )2 + (1 − 𝑤(𝑝))𝑈′′(𝑊2) (𝑟2 − 𝑟 𝑓 )2

Since 𝑈′′(𝑊) < 0 (risk aversion) and the squared terms are positive, we established in Theorem
1 that 𝑔𝑎 < 0.

Step 3: Calculate the numerator term, 𝑔𝜋: We need to calculate the partial derivative of the
FOC function 𝑔 with respect to the inflation expectation 𝜋𝑒. First, recall the state-contingent
wealth 𝑊𝑖 and its partial derivative with respect to 𝜋𝑒:

𝑊𝑖 = 𝐴 + 𝐴(𝑟 𝑓 − 𝜋𝑒) + 𝑎∗(𝑟𝑖 − 𝑟 𝑓 )

The derivatives of the wealth components with respect to 𝜋𝑒 are:

𝜕𝑊𝑖

𝜕𝜋𝑒
= −𝐴 and

𝜕

𝜕𝜋𝑒
(𝑟𝑖 − 𝑟 𝑓 ) = 0 (15)

Now, differentiate 𝑔 with respect to 𝜋𝑒, using the chain rule 𝜕𝑈′ (𝑊𝑖)
𝜕𝜋𝑒

= 𝑈′′(𝑊𝑖) 𝜕𝑊𝑖

𝜕𝜋𝑒
:

𝑔𝜋 = 𝑤(𝑝)
(
𝑈′′(𝑊1)

𝜕𝑊1
𝜕𝜋𝑒

)
(𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝))

(
𝑈′′(𝑊2)

𝜕𝑊2
𝜕𝜋𝑒

)
(𝑟2 − 𝑟 𝑓 )

= 𝑤(𝑝)𝑈′′(𝑊1) (−𝐴) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝))𝑈′′(𝑊2) (−𝐴) (𝑟2 − 𝑟 𝑓 )
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Factoring out −𝐴:

𝑔𝜋 = −𝐴
[
𝑤(𝑝)𝑈′′(𝑊1) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤(𝑝))𝑈′′(𝑊2) (𝑟2 − 𝑟 𝑓 )

]
(16)

Step 4: Sign the numerator term, 𝑔𝜋, using DARA: The DARA assumption states that Absolute
Risk Aversion, 𝑅𝐴 (𝑊) ≡ −𝑈′′ (𝑊)

𝑈′ (𝑊) , is strictly decreasing in wealth𝑊 . We analyze the term inside
the brackets in Equation (16):

Bracket = 𝑤(·)𝑈′′(𝑊1)︸   ︷︷   ︸
<0

(𝑟1 − 𝑟 𝑓 )︸    ︷︷    ︸
>0

+(1 − 𝑤(·))𝑈′′(𝑊2)︸   ︷︷   ︸
<0

(𝑟2 − 𝑟 𝑓 )︸    ︷︷    ︸
<0

Specifically, i) the first term (Good State) is the product of a negative, a positive, and a positive,
resulting in a negative value; and ii) The second term (Bad State) is the product of three negative
terms (since 𝑟2 − 𝑟 𝑓 < 0), resulting in a negative value.2 Thus, under DARA and the given
structure:

Bracket < 0

Substituting this back into Equation (16) (and noting 𝐴 > 0):

𝑔𝜋 = −𝐴 · [Bracket] = −𝐴 · (−) = (+)

𝑔𝜋 > 0

Step 5: Conclusion: Substituting the signs of the numerator and denominator back into the IFT
Equation (14):

𝑑𝑎∗

𝑑𝜋𝑒
= −𝑔𝜋

𝑔𝑎
= − (+)

(−)

=⇒ 𝑑𝑎∗

𝑑𝜋𝑒
< 0

Thus, higher inflation expectations reduce the optimal risky investment under the DARA as-
sumption. □

Theorem 3 (Effect of probability weighting). Fix inflation expectations 𝜋𝑒 and let 𝑎∗(𝑤) denote
2Term 2: (1 − 𝑤(𝑝)) ·𝑈′′ (𝑊2) · (𝑟2 − 𝑟 𝑓 ) =⇒ (+) · (−) · (−) = (+) The sign of the bracketed term is

thus ambiguous (Negative + Positive). The claim that the bracket is negative:

𝑤 𝑈′′ (𝑊1) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤)𝑈′′ (𝑊2) (𝑟2 − 𝑟 𝑓 ) < 0

requires the magnitude of the negative first term to dominate the positive second term. This condition is guaranteed
by the DARA assumption in this context.

The DARA assumption implies that as 𝜋𝑒 increases, real wealth 𝑊𝑖 decreases (due to 𝜕𝑊𝑖

𝜕𝜋𝑒 = −𝐴). For DARA
utility, a decrease in wealth 𝑊 causes an increase in absolute risk aversion 𝑅𝐴(𝑊), meaning the marginal utility
slope |𝑈′′ (𝑊) | increases faster than 𝑈′ (𝑊) decreases. Specifically, to obtain 𝑑𝑎∗

𝑑𝜋𝑒 < 0, we require 𝑔𝜋 > 0. Since
𝑔𝜋 = −𝐴 · [Bracket], we need Bracket < 0. The DARA assumption ensures that the overall magnitude of the
bracketed expression is negative, which is the required sign for the wealth effect.
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the interior solution for a weighting function 𝑤. Let 𝜗 parameterize 𝑤 (e.g., Prelec weighting).
Then:

𝜕𝑎∗

𝜕𝜗
= −𝑔𝑤 (𝑎

∗)
𝑔𝑎 (𝑎∗)

𝜕𝑤

𝜕𝜗
,

with 𝑔𝑤 (𝑎) = 𝑈′(𝑊1) (𝑟1 − 𝑟 𝑓 ) −𝑈′(𝑊2) (𝑟2 − 𝑟 𝑓 ). In particular, if 𝜕𝑤
𝜕𝜗

> 0 overweights the good
state (relative to the benchmark), then:

𝜕𝑎∗

𝜕𝜗
> 0.

Proof. The analysis determines the comparative static 𝜕𝑎∗

𝜕𝜗
by treating the weighting parameter

𝜗 as an index for the subjective probability 𝑤.

Step 1: Apply the implicit function theorem and chain rule: The optimal risky share 𝑎∗ is defined
implicitly by the First-Order Condition (FOC), 𝑔(𝑎, 𝑤) = 0. Since the parameter 𝜗 affects 𝑎∗

only through the subjective weight 𝑤 = 𝑤(𝑝, 𝜗), we use the chain rule and the Implicit Function
Theorem (IFT) sequentially. First, applying the IFT to 𝑔(𝑎, 𝑤) = 0 with respect to 𝑤:

𝜕𝑔

𝜕𝑎

𝜕𝑎∗

𝜕𝑤
+ 𝜕𝑔

𝜕𝑤
= 0 =⇒ 𝜕𝑎∗

𝜕𝑤
= −𝑔𝑤

𝑔𝑎

Second, applying the chain rule to relate 𝜕𝑎∗

𝜕𝑤
to 𝜕𝑎∗

𝜕𝜗
:

𝜕𝑎∗

𝜕𝜗
=

𝜕𝑎∗

𝜕𝑤

𝜕𝑤

𝜕𝜗
= −𝑔𝑤 (𝑎

∗)
𝑔𝑎 (𝑎∗)

𝜕𝑤

𝜕𝜗
(17)

Step 2: Sign the denominator, 𝑔𝑎: The denominator 𝑔𝑎 =
𝜕𝑔

𝜕𝑎
is the second-order condition

(SOC), 𝑓𝑎𝑎, which is strictly negative due to risk aversion (𝑈′′ < 0):

𝑔𝑎 < 0

Step 3: Calculate and sign the cross-partial term, 𝑔𝑤: We calculate 𝑔𝑤 =
𝜕𝑔

𝜕𝑤
by differentiating

the FOC with respect to the subjective weight 𝑤, holding 𝑎 (and thus 𝑊1,𝑊2) constant:

𝑔(𝑎, 𝑤) = 𝑤 𝑈′(𝑊1) (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤)𝑈′(𝑊2) (𝑟2 − 𝑟 𝑓 )

Differentiating yields:

𝑔𝑤 = 𝑈′(𝑊1) (𝑟1 − 𝑟 𝑓 ) −𝑈′(𝑊2) (𝑟2 − 𝑟 𝑓 )

We now sign 𝑔𝑤 using the model assumptions (𝑟1 > 𝑟 𝑓 > 𝑟2 and 𝑈′ > 0):
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• Term 1 (Good State): 𝑈′(𝑊1) (𝑟1 − 𝑟 𝑓 ) is (+) · (+) = (+).

• Term 2 (Bad State): 𝑈′(𝑊2) (𝑟2 − 𝑟 𝑓 ) is (+) · (−) = (−).

Since the positive term (Term 1) is followed by the subtraction of a negative term (Term 2), the
result is strictly positive:

𝑔𝑤 = 𝑈′(𝑊1) (𝑟1 − 𝑟 𝑓 )︸               ︷︷               ︸
>0

−𝑈′(𝑊2) (𝑟2 − 𝑟 𝑓 )︸               ︷︷               ︸
<0

> 0

Step 4: Sign the probability weighting term, 𝜕𝑤
𝜕𝜗

: The theorem specifies the condition that the
parameter 𝜗 “overweights the good state”, which is formally defined as:

𝜕𝑤

𝜕𝜗
> 0

This condition means that a rise in 𝜗 increases the subjective perception of the probability of
the good state, 𝑤(𝑝), relative to the bad state, 1 − 𝑤(𝑝).

Step 5: Conclusion: Substitute the determined signs back into the IFT expression (17):

𝜕𝑎∗

𝜕𝜗
= −𝑔𝑤

𝑔𝑎

𝜕𝑤

𝜕𝜗

𝜕𝑎∗

𝜕𝜗
= − (+)

(−) (+) = (−) · (−) · (+) = (+)

=⇒ 𝜕𝑎∗

𝜕𝜗
> 0

Thus, an increase in the parameter𝜗 (which overweights the good state) unambiguously increases
the optimal risky investment 𝑎∗. □

Corollary 2 (Rational benchmark). If the probability weighting is rational, i.e., 𝑤(𝑝) = 𝑝 for
all objective probabilities 𝑝 (which implies 𝜕𝑤

𝜕𝜗
= 0), then 𝜕𝑎∗

𝜕𝜗
= 0, and Theorem 3 collapses to

the standard expected-utility case.

Proof. The corollary is a specialization of the comparative static result derived in Theorem 3
regarding the parameterization of the probability weighting function.

Step 1: Recall the general comparative static from Theorem 3: Theorem 3 establishes the
relationship between the optimal risky share 𝑎∗ and the probability weighting parameter 𝜗 using
the implicit function theorem (IFT) and chain rule:

𝜕𝑎∗

𝜕𝜗
= −𝑔𝑤 (𝑎

∗, 𝑤)
𝑔𝑎 (𝑎∗, 𝑤)

𝜕𝑤

𝜕𝜗
(18)
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where 𝑔(𝑎, 𝑤) = 0 is the FOC, 𝑔𝑎 is the strictly negative SOC (𝑔𝑎 < 0), and 𝑔𝑤 is the partial
derivative of the FOC with respect to the subjective weight 𝑤:

𝑔𝑤 (𝑎) = 𝑈′(𝑊1) (𝑟1 − 𝑟 𝑓 ) −𝑈′(𝑊2) (𝑟2 − 𝑟 𝑓 )

Step 2: Apply the rational benchmark condition: The condition for the rational benchmark is that
the investor uses the objective probability 𝑝 directly, meaning the subjective weighting function
𝑤(𝑝) is fixed to 𝑝:

𝑤(𝑝) = 𝑝

Since 𝑤 is defined explicitly as equal to the objective probability 𝑝, it is constant with respect to
any parameter 𝜗 that describes a distortion or weighting of 𝑝:

𝜕𝑤

𝜕𝜗
=

𝜕𝑝

𝜕𝜗
= 0

Step 3: Conclude the effect on 𝑎∗: Substituting the result from Step 2 ( 𝜕𝑤
𝜕𝜗

= 0) into the general
comparative static expression (18):

𝜕𝑎∗

𝜕𝜗
= −𝑔𝑤 (𝑎

∗, 𝑤)
𝑔𝑎 (𝑎∗, 𝑤)

· 0

=⇒ 𝜕𝑎∗

𝜕𝜗
= 0

The conclusion is that when the probability weighting is rational, the optimal risky allocation
𝑎∗ is invariant to the weighting parameter 𝜗. This confirms that the model correctly reduces to
the standard expected-utility framework when behavioral distortions are absent. □

2.3 Closed-form comparative statics for CRRA (local)

To make the wealth effect explicit, consider CRRA utility:

𝑈 (𝑊) = 𝑊1−𝛾

1 − 𝛾
, 𝛾 > 0, 𝛾 ≠ 1.

where 𝛾 is coefficient of relative risk aversion which measures how strongly an investor dislikes
risk relative to wealth.

Then 𝑈′(𝑊) = 𝑊−𝛾 and 𝑈′′(𝑊) = −𝛾𝑊−𝛾−1. Plugging into (10) yields:

𝑤𝑊
−𝛾
1 (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤)𝑊−𝛾

2 (𝑟2 − 𝑟 𝑓 ) = 0. (19)
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Using (6), 𝑊1 and 𝑊2 are affine in 𝑎. The derivative terms become:

𝑔𝑎 = −𝛾
[
𝑤𝑊

−𝛾−1
1 (𝑟1 − 𝑟 𝑓 )2 + (1 − 𝑤)𝑊−𝛾−1

2 (𝑟2 − 𝑟 𝑓 )2
]
< 0, (20)

𝑔𝜋 = 𝛾𝐴

[
𝑤𝑊

−𝛾−1
1 (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤)𝑊−𝛾−1

2 (𝑟2 − 𝑟 𝑓 )
]
. (21)

Hence, from (14),

𝑑𝑎★

𝑑𝜋𝑒
=

𝑔𝜋

𝑔𝑎
= 𝐴

[
𝑤𝑊

−𝛾−1
1 (𝑟1 − 𝑟 𝑓 ) + (1 − 𝑤)𝑊−𝛾−1

2 (𝑟2 − 𝑟 𝑓 )
]

𝑤𝑊
−𝛾−1
1 (𝑟1 − 𝑟 𝑓 )2 + (1 − 𝑤)𝑊−𝛾−1

2 (𝑟2 − 𝑟 𝑓 )2
. (22)

Under the canonical ordering 𝑟1 > 𝑟 𝑓 > 𝑟2, the numerator in (22) is negative (the second term is
negative because 𝑟2 − 𝑟 𝑓 < 0), so 𝑑𝑎★

𝑑𝜋𝑒
< 0. This recovers Theorem 2 and shows explicitly how

wealth levels 𝑊𝑖 scale the sensitivity through 𝑊
−𝛾−1
𝑖

.

Figure 1 provides a graphical counterpart to the analytical results derived above. The solid
orange line and dashed blue line depict the opportunity sets corresponding to baseline and higher
inflation expectations. Because inflation expectations 𝜋𝑒 uniformly reduce real returns without
altering the slope of excess returns (𝑟1 − 𝑟 𝑓 ) and (𝑟2 − 𝑟 𝑓 ), the opportunity set shifts downward
in parallel when 𝜋𝑒 rises. This movement represents a pure wealth effect that compresses the
investor’s attainable combinations of (𝑊1,𝑊2) across states.

The green indifference curves represent behavioral preferences under the baseline weighting
function 𝑤(𝑝), while the blue curve represents an alternative scenario in which probability
weighting places greater emphasis on the good state. The point of tangency between the baseline
opportunity line and the yellow indifference curve identifies the optimal risky allocation 𝑎★. As
inflation expectations increase, the tangency point shifts inward along the opportunity locus,
confirming the analytical result in Theorem 2 that 𝑑𝑎★

𝑑𝜋𝑒
< 0.

Comparatively, when the investor overweights the good state (higher 𝑤(𝑝)), the indifference
curves rotate outward, reflecting reduced perceived risk and higher marginal utility in the favor-
able outcome. This behavioral distortion increases the risky share, consistent with Theorem 3,
where 𝜕𝑎★

𝜕𝜗
> 0. The 45-degree line, plotted as a reference, denotes the certainty locus 𝑊1 = 𝑊2.

The feasible region below the opportunity frontier highlights all attainable wealth combinations
given the investor’s endowment and market structure. Together, these graphical features visu-
ally demonstrate how inflation expectations and probability weighting jointly determine optimal
portfolio selection in the (𝑊1,𝑊2) space.
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Figure 1: Opportunity line and indifference curves under shifts in inflation expectations 𝜋𝑒 and
probability weighting 𝑤(𝑝)

Figure 2 visualizes the investor’s expected utility 𝑓 (𝑎; 𝜋𝑒, 𝑝) as a joint function of the risky
investment share 𝑎 and inflation expectations 𝜋𝑒. Each contour line traces combinations of
(𝑎, 𝜋𝑒) that yield the same level of utility under the model. Darker regions represent lower
utility, whereas lighter regions indicate higher attainable utility given the investor’s wealth, risk
aversion, and behavioral weighting 𝑤(𝑝).

The bold solid curve corresponds to the locus of optimal allocations 𝑎★(𝜋𝑒), that is, the ridge
line of maximal utility for each inflation expectation. This ridge illustrates that as 𝜋𝑒 rises, the
investor’s real wealth declines, reducing the feasible opportunity set and shifting the optimal
risky position leftward. Consequently, the optimal risky investment 𝑎★ declines monotonically
with inflation expectations, consistent with Theorem 2, which establishes 𝑑𝑎★

𝑑𝜋𝑒
< 0 under DARA

preferences.

Economically, Figure 2 provides a local visualization of the wealth effect embedded in the
comparative-statics analysis. The downward slope of the 𝑎★(𝜋𝑒) path reflects that higher
expected inflation—by eroding real returns—induces investors to rebalance away from risky
assets toward the risk-free component. This contour representation thus complements Figure 1
by translating the theoretical geometry of (𝑊1,𝑊2) space into the policy space (𝑎, 𝜋𝑒), making
explicit the continuous relationship between inflation expectations and optimal portfolio risk
exposure.

14



Figure 2: Contour map of expected utility 𝑓 (𝑎; 𝜋𝑒, 𝑝) over the (𝑎, 𝜋𝑒) space, with the optimal
policy path 𝑎★(𝜋𝑒) indicated by the solid curve.

3 Conclusion and Policy Implications

This paper develops a unified behavioral–macro portfolio model that analytically links inflation
expectations, probability weighting, and optimal risky investment under CRRA preferences.
Within a single-period framework, we show that higher inflation expectations uniformly reduce
real returns, generating a pure wealth effect that shifts the opportunity frontier downward without
altering its slope. Under decreasing absolute risk aversion (DARA), this wealth compression
lowers the investor’s optimal risky share. In contrast, a higher subjective weight on the good
state—as in a Prelec-type probability weighting—rotates indifference curves outward, raising the
optimal risky exposure. Together, these results provide a closed-form behavioral foundation for
how macroeconomic expectations and subjective probability distortions jointly shape portfolio
allocation.

Our analytical results have several implications for monetary policy and financial stability.
First, they highlight that persistent increases in inflation expectations may systematically reduce
investors’ risk appetite and shift wealth toward safer assets, amplifying risk-off episodes in finan-
cial markets. Central banks should therefore monitor not only the level of inflation expectations
but also their dispersion across households and institutions, since heterogeneous expectations
can generate portfolio imbalances and asset-price volatility. Second, the framework suggests
that improving the credibility and transparency of monetary communication can stabilize in-
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vestors’ real-return expectations, mitigating behavioral distortions in risk-taking. Finally, the
model’s comparative statics provide a theoretical rationale for incorporating behavioral proba-
bility weighting into macroprudential stress testing, where distorted perceptions of “good” and
“bad” states affect capital allocation and liquidity preference.

While the model yields clean analytical insights, several limitations merit attention. First, the
single-period structure abstracts from dynamic feedback between expectations, wealth accu-
mulation, and learning over time. Extending the framework into a multi-period or stochastic
dynamic general equilibrium (DSGE) environment would allow analysis of persistence and in-
tertemporal substitution effects. Second, our behavioral weighting function is parameterized
exogenously; empirical calibration using experimental or survey-based probability judgments
could better quantify the magnitude of distortion across investor types. Third, the model fo-
cuses on two discrete states of the world. Incorporating continuous return distributions or
ambiguity-averse preferences (as in Epstein and Schneider, 2008) would enhance realism and
robustness.

Future research may integrate this behavioral portfolio mechanism into asset-pricing and macro-
finance models to study how inflation expectations propagate through financial markets, or
how policy announcements dynamically reshape investors’ subjective state probabilities. Such
extensions could inform central-bank communication strategies and the design of behavioral
macroprudential tools in inflationary environments.
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